Derin Öğrenme ve Sinir Ağı Nedir?
Sinir Ağları(Neural Networks) ve Derin Öğrenme(Deep Learning) , günümüzde Yapay Zeka(Artificial Intelligence) ile birlikte kullanılan iki popüler terimdir . Yapay zeka dünyasındaki son gelişmeler, yapay zekanın zekasını geliştirmede önemli bir rol oynadıkları için bu ikisine atfedilebilir.
Etrafınıza bakın ve etrafınızda giderek daha akıllı makineler bulacaksınız. Yapay Sinir Ağları(Neural Networks) ve Derin Öğrenme(Deep Learning) sayesinde , bir zamanlar insanların gücü olarak kabul edilen işler ve yetenekler artık makineler tarafından gerçekleştiriliyor. Bugün, Makineler artık daha karmaşık algoritmaları yedirmek için üretilmiyor, bunun yerine, her yerde birçok endüstride devrim yaratabilecek özerk, kendi kendini yetiştiren bir sisteme dönüşmek üzere besleniyorlar.
Yapay Sinir Ağları(Neural Networks) ve Derin Öğrenme(Deep Learning ) , araştırmacılara görüntü tanıma, konuşma tanıma, bir veri setinde daha derin ilişkiler bulma gibi görevlerde büyük başarı sağladı. Muazzam miktarda veri ve hesaplama gücünün kullanılabilirliği sayesinde makineler nesneleri tanıyabilir, konuşmaları çevirebilir, karmaşık kalıpları tanımlamak için kendilerini eğitebilir, stratejiler tasarlamayı öğrenebilir ve gerçek zamanlı olarak beklenmedik durum planları yapabilir.
Peki, bu tam olarak nasıl çalışıyor? Hem Nötr (Neutral) Ağların(Networks) hem de Derin Öğrenmenin(Deep-Learning) ilişkili olduğunu biliyor musunuz , aslında Derin(Deep) öğrenmeyi anlamak için önce Sinir Ağlarını(Neural Networks) anlamanız gerekir mi? Daha fazlasını öğrenmek için okumaya devam edin.
Sinir Ağı Nedir?
Bir Sinir(Neural) ağı, temel olarak, bir bilgisayarın gözlemsel verilerden öğrenmesini sağlayan bir programlama modeli veya bir dizi algoritmadır. Bir Sinir(Neural) ağı, kalıpları tanıyarak çalışan bir insan beynine benzer. Duyusal veriler, bir makine algısı, etiketleme veya ham girdiyi kümeleme kullanılarak yorumlanır. Tanınan örüntüler, görüntü, ses, metin vb. verilerin çevrildiği vektörler içine alınmış sayısaldır.
Think Neural Network! Think how a human brain function
Yukarıda bahsedildiği gibi, bir sinir ağı tıpkı bir insan beyni gibi çalışır; tüm bilgileri bir öğrenme süreci yoluyla edinir. Bundan sonra, sinaptik ağırlıklar edinilen bilgileri depolar. Öğrenme sürecinde, ağın sinaptik ağırlıkları istenen amaca ulaşmak için yeniden düzenlenir.
Tıpkı insan beyni gibi, Sinir Ağları(Neural Networks) da örüntü tanıma ve algılama gibi hesaplamaları hızla gerçekleştiren doğrusal olmayan paralel bilgi işleme sistemleri gibi çalışır. Sonuç olarak, bu ağlar, girişlerin/sinyallerin doğası gereği doğrusal olmadığı konuşma, ses ve görüntü tanıma gibi alanlarda çok iyi performans gösterir.
Basit bir ifadeyle, Sinir Ağı'nı insan beyni gibi bilgi depolayabilen ve tahminlerde bulunmak için kullanabilen bir şey olarak hatırlayabilirsiniz.(In simple words, you can remember Neural Network as something which is capable of stocking knowledge like a human brain and use it to make predictions.)
Sinir Ağlarının Yapısı
(İmaj Kredisi: Matematik)
Yapay Sinir Ağları(Networks) üç katmandan oluşur,
- giriş katmanı,
- Gizli katman ve
- Çıkış katmanı.
Aşağıdaki şemada küçük dairelerle gösterildiği gibi, her katman bir veya daha fazla düğümden oluşur. Düğümler arasındaki çizgiler, bir düğümden diğerine bilgi akışını gösterir. Bilgi, girdiden çıktıya, yani soldan sağa doğru akar (bazı durumlarda sağdan sola veya her iki yönde de olabilir).
Giriş katmanının düğümleri pasiftir, yani verileri değiştirmezler. Girdilerinde tek bir değer alırlar ve değeri birden çok çıktılarına kopyalarlar. Oysa(Whereas) gizli ve çıkış katmanının düğümleri aktiftir. Böylece verileri değiştirebilirler.
Birbirine bağlı bir yapıda, giriş katmanındaki her değer çoğaltılır ve tüm gizli düğümlere gönderilir. Gizli bir düğüme giren değerler, programda saklanan önceden belirlenmiş bir dizi sayı olan ağırlıklarla çarpılır. Ağırlıklı girdiler daha sonra tek bir sayı üretmek için eklenir. Sinir ağları, herhangi bir sayıda katmana ve katman başına herhangi bir sayıda düğüme sahip olabilir. Çoğu uygulama, maksimum birkaç yüz girdi düğümü ile üç katmanlı yapıyı kullanır.
Sinir Ağı Örneği(Example of Neural Network)
Bir sonar sinyalindeki nesneleri tanıyan bir sinir ağı düşünün ve PC'de depolanmış 5000 sinyal örneği var. Bilgisayarın bu örneklerin bir denizaltı, balina, buzdağı, deniz kayaları veya hiçbir şeyi temsil edip etmediğini anlaması gerekiyor mu? Geleneksel DSP(Conventional DSP) yöntemleri, bu soruna korelasyon ve frekans spektrum analizi gibi matematik ve algoritmalarla yaklaşacaktır.
Bir sinir ağındayken, 5000 örnek giriş katmanına beslenecek ve bu da çıktı katmanından değerlerin fırlamasına neden olacaktır. Uygun ağırlıklar seçilerek çıktı, çok çeşitli bilgileri rapor edecek şekilde yapılandırılabilir. Örneğin, denizaltı (evet/hayır), deniz kayası (evet/hayır), balina (evet/hayır) vb. için çıktılar olabilir.
Diğer ağırlıklarla, çıktılar nesneleri metal veya metal olmayan, biyolojik veya biyolojik olmayan, düşman veya müttefik vb. Sınıflandırabilir. Algoritma yok, kural yok, prosedür yok; sadece seçilen ağırlıkların değerleri tarafından dikte edilen girdi ve çıktı arasında bir ilişki.
Şimdi Derin Öğrenme kavramını anlayalım.(Now, let’s understand the concept of Deep Learning.)
Derin Öğrenme Nedir?
Derin öğrenme temel olarak Sinir Ağlarının(Neural Networks) bir alt kümesidir ; belki de içinde birçok gizli katman bulunan karmaşık bir Sinir Ağı(Neural Network) diyebilirsiniz .
Teknik olarak derin(Deep) öğrenme, sinir ağlarında öğrenmeye yönelik güçlü bir teknikler seti olarak da tanımlanabilir. Karmaşık eğitim modelini mümkün kılmak için birçok katmandan, büyük veri setlerinden, güçlü bilgisayar donanımından oluşan yapay sinir ağlarını ( YSA ) ifade eder. (ANN)Gittikçe daha zengin işlevselliğe sahip çoklu katmanlara sahip yapay sinir ağlarını kullanan yöntem ve teknikler sınıfını içerir.
Derin öğrenme ağının yapısı(Structure of Deep learning network)
Derin(Deep) öğrenme ağları çoğunlukla sinir ağı mimarilerini kullanır ve bu nedenle genellikle derin sinir ağları olarak adlandırılır. “Derin” çalışmasının kullanımı, sinir ağındaki gizli katmanların sayısını ifade eder. Geleneksel bir sinir ağı, üç gizli katman içerirken, derin ağlar 120-150 kadar olabilir.
Derin (Deep) Öğrenme(Learning) , bir bilgisayar sistemine diğer veriler hakkında karar vermek için kullanabileceği çok sayıda veri beslemeyi içerir. Bu veriler, makine öğrenmesinde olduğu gibi sinir ağları aracılığıyla beslenir. Derin(Deep) öğrenme ağları, manuel özellik çıkarımına gerek kalmadan özellikleri doğrudan verilerden öğrenebilir.
Derin Öğrenme Örnekleri(Examples of Deep Learning)
Derin öğrenme şu anda Otomobil(Automobile) , Havacılık(Aerospace) ve Otomasyondan (Automation)Medikal'e(Medical) kadar hemen hemen her sektörde kullanılmaktadır . İşte bazı örnekler.
- Google , Netflix ve Amazon : Google bunu ses ve görüntü tanıma algoritmalarında kullanır. Netflix ve Amazon , daha sonra ne izlemek veya satın almak istediğinize karar vermek için derin öğrenmeyi de kullanıyor
- Sürücüsüz sürüş: Araştırmacılar, dur işaretleri ve trafik ışıkları gibi nesneleri otomatik olarak algılamak için derin öğrenme ağlarını kullanıyor. Derin(Deep) öğrenme, yayaları tespit etmek için de kullanılır ve bu da kazaları azaltmaya yardımcı olur.
- Havacılık ve Savunma: Derin öğrenme, ilgi alanlarını belirleyen uydulardan gelen nesneleri belirlemek ve birlikler için güvenli veya güvensiz bölgeleri belirlemek için kullanılır.
- Deep Learning sayesinde Facebook , fotoğraflarınızdaki arkadaşlarınızı otomatik olarak bulur ve etiketler. Skype, sözlü iletişimleri gerçek zamanlı ve oldukça doğru bir şekilde çevirebilir.
- Tıbbi Araştırma: Tıp araştırmacıları, kanser hücrelerini otomatik olarak tespit etmek için derin öğrenmeyi kullanıyor
- Endüstriyel Otomasyon(Industrial Automation) : Derin öğrenme, insanların veya nesnelerin güvenli olmayan bir makine mesafesinde olduğunu otomatik olarak algılayarak, ağır makinelerin etrafındaki işçi güvenliğini artırmaya yardımcı olur.
- Elektronik: Derin(Deep) öğrenme, otomatik işitme ve konuşma çevirisinde kullanılıyor.
Okuyun(Read) : Makine Öğrenimi ve Derin Öğrenme(Machine Learning and Deep Learning) Nedir?
Çözüm(Conclusion)
Sinir Ağları(Neural Networks) kavramı yeni değil ve araştırmacılar son on yılda orta düzeyde bir başarı ile karşılaştılar. Ancak oyunun kurallarını değiştiren asıl şey, Derin(Deep) sinir ağlarının evrimi olmuştur.
Geleneksel makine öğrenimi yaklaşımlarını geride bırakarak, derin sinir ağlarının yalnızca birkaç araştırmacı tarafından eğitilip denenebileceğini değil, aynı zamanda yakın gelecekte daha iyi yeniliklerle gelmek için çok uluslu teknoloji şirketleri tarafından benimsenebilecek bir kapsama sahip olduğunu gösterdi.
Thanks to Deep Learning and Neural Network, AI is not just doing the tasks, but it has started to think!
Related posts
SMS Organizer: SMS Application Machine Learning tarafından desteklenmektedir
Artificial Intelligence'de Machine Learning and Deep Learning nelerdir?
Windows üzerinde WAMP kullanarak Drupal nasıl yüklenir
Windows, IOS, Android için Best Software & Hardware Bitcoin Wallets
Setup Internet Radio Station ücretsiz Windows PC üzerinde
Encrypt Nasıl Yapılır ve LibreOffice Belgelerine Şifreler Ekleyin
Fix Partner TeamViewer Windows 10'de yönlendirici hatasına bağlanmadı
VLC'teki güncellemeleri kontrol ederken bir hata oluştu
Ücretsiz Task Management Software Takım Çalışması yönetmek için
Microsoft Identity Manager: Özellikler, Download
Disqus comment Kutu yükleme veya bir web sitesi için gösterme
OpenGL uygulamaları Miracast wireless ekranında çalışmaz Windows 10
Nine Nostalgic Tech Sounds muhtemelen yıllarda duymamış
Plex Server and Server Settings'den kilitlendi mi? İşte düzeltme!
Best Laptop Backpacks Men and Women için
NASA'nin Eyes Universe'i Astronauts gibi keşfetmenize yardımcı olur
Video Konferans Görselini, İpuçları ve İzlemeniz Gereken Kurallar
E-Waste management, geri dönüşüm, elden çıkarma, gerçekler, problemler, çözümler
Bu hesap herhangi bir Mixer account ile bağlantılı değil
NFT ne demek ve NFT Digital Art nasıl oluşturulur?